Tumor-targeted delivery of polyethylene glycol-conjugated D-amino acid oxidase for antitumor therapy via enzymatic generation of hydrogen peroxide.
نویسندگان
چکیده
Hydrogen peroxide (H(2)O(2)) is a strong oxidant that induces apoptosis of tumor cells in vitro. Here, we investigated the antitumor activity of an H(2)O(2)-generating enzyme, D-amino acid oxidase (DAO), and its conjugate with polyethylene glycol (PEG; PEG-DAO). Compared with DAO, PEG-DAO showed improved pharmacokinetic parameters in mice after i.v. injection. PEG-DAO administered i.v. accumulated selectively in tumor tissue with insignificant accumulation in normal organs and tissues. To generate cytotoxic H(2)O(2) at the tumor site, PEG-DAO was first administrated i.v. to tumor-bearing mice. After an adequate lag time, the substrate of DAO, D-proline, was injected i.p. This treatment resulted in significant suppression of tumor growth compared with tumor growth in control animals (not given treatment; P < 0.001). Similar treatment with native DAO showed no effect under the same conditions. Oxidative metabolites were significantly increased in solid tumors by administration of PEG-DAO followed by D-proline (P < 0.002, compared with the group receiving no treatment), as evidenced by thiobarbituric acid-reactive substance assay. This treatment did not affect results from the metabolites in the liver and kidney. These findings suggest that tumor-targeted delivery of DAO is accomplished by using pegylated enzyme and thereby taking advantage of the enhanced permeability and retention effect in solid tumor. PEG-DAO thus delivered together with D-proline produces remarkable antitumor activity via extensive generation of H(2)O(2).
منابع مشابه
Generation of Hydrogen Peroxide d-Amino Acid Oxidase for Antitumor Therapy via Enzymatic Tumor-targeted Delivery of Polyethylene Glycol-conjugated
Hydrogen peroxide (H2O2) is a strong oxidant that induces apoptosis of tumor cells in vitro. Here, we investigated the antitumor activity of an H2O2-generating enzyme, D-amino acid oxidase (DAO), and its conjugate with polyethylene glycol (PEG; PEG-DAO). Compared with DAO, PEG-DAO showed improved pharmacokinetic parameters in mice after i.v. injection. PEG-DAO administered i.v. accumulated sele...
متن کاملTumor-targeted induction of oxystress for cancer therapy.
Reactive oxygen species (ROS), such as superoxide anion radicals (O.-2) and hydrogen peroxide (H2O2) are potentially harmful by-products of normal cellular metabolism that directly affect cellular functions. ROS is generated by all aerobic organisms and it seems to be indispensable for signal transduction pathways that regulate cell growth and reduction-oxidation (redox) status. However, overpr...
متن کاملOxystress inducing antitumor therapeutics via tumor-targeted delivery of PEG-conjugated D-amino acid oxidase.
We had developed a H(2)O(2) generating enzyme, polyethylene glycol conjugated D-amino acid oxidase (PEG-DAO), which exhibited potent antitumor activity by generating toxic reactive oxygen species, namely oxidation therapy, subsequently showed remarkable antitumor effect on murine Sarcoma 180 solid tumor, by taking advantage of the enhanced permeability and retention effect. Along this line, we ...
متن کاملGold Nanorods Conjugated with Doxorubicin and cRGD for Combined Anticancer Drug Delivery and PET Imaging
A multifunctional gold nanorod (GNR)-based nanoplatform for targeted anticancer drug delivery and positron emission tomography (PET) imaging of tumors was developed and characterized. An anti-cancer drug (i.e., doxorubicin (DOX)) was covalently conjugated onto PEGylated (PEG: polyethylene glycol) GNR nanocarriers via a hydrazone bond to achieve pH-sensitive controlled drug release. Tumor-target...
متن کاملDual tumor-targeted poly(lactic-co-glycolic acid)–polyethylene glycol–folic acid nanoparticles: a novel biodegradable nanocarrier for secure and efficient antitumor drug delivery
Further specific target-ability development of biodegradable nanocarriers is extremely important to promote their security and efficiency in antitumor drug-delivery applications. In this study, a facilely prepared poly(lactic-co-glycolic acid) (PLGA)-polyethylene glycol (PEG)-folic acid (FA) copolymer was able to self-assemble into nanoparticles with favorable hydrodynamic diameters of around 1...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Cancer research
دوره 62 11 شماره
صفحات -
تاریخ انتشار 2002